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Preface

This thesis presents a method for describing the syntax and static 5

semantics of Ada in terms of a W-grammar. The original goal was to
. )

create a replacement for the Ada Language Reference Manual. Inmy D © b v
opinion, the W-grammars fall short of this goal since they are less .
readable than BNF for determining Ada's syntax, and experience shows
that programmers most often refer to references to answer questions
about syntax.-

However, a W-grammar description of Ada is still useful to computer
scientists who need more than a simple understanding of the syntax and a
rudimentary description of the semantics. A formal semantic definition
of Ada is needed by system designers for multiple targets, by compiler !

. designers, and by individuals needing formal correctness proofs of Ada

programs, -

This thesis could not have been completed without the cooperation

rf ¥ vvrv. s

and help of others. I would like to thank the members of my thesis ]
comnittee, Lt Col Seward and Maj Woffinden, for their comments and
suggestions which have improved this document 1000% since the first
draft. And a special thanks to Capt Jim Howatt, my thesis advisor, who
must by now have memorized every word. These people are the special
kind of people who make AFIT the institution it is, and I'm proud to
have been a part of it. Finally, thanks to my wife, Nancy, who was
always there to support me even when I was so busy it seemed I had -

forgotten her.

Roy A. Flowers

L E

ii




J

ht
ATe Table of Contents !
A'D. )
o

Page

Pl ol

Preface . ¢ ¢« ¢ ¢ ¢ ¢ o o o o o o o ¢ o o o o o o o s o o o ii $
List of Figures . « o« o s o o o ¢ o s ¢ s ¢ o o s o ¢ s o o @ v .
] List of Tables . ¢« ¢ ¢ o o o ¢ o ¢ ¢ o o o s o o o o s ¢ o o o v
| ABSEract . & o o o ¢ o o o o o o 2 s e o o e o s s s s s 0 s » vi
I. Introduction and Literature Review . . ¢« ¢ ¢« ¢ ¢« ¢ & ¢« & 1
Background . « o ¢« o ¢ o o o s ¢ o ¢ s s 6 0 o o s 1 .
The Problem « ¢« o ¢ ¢ o o ¢ s ¢ ¢ o o s o o o o o o 3 .
Syntax vs, SemanticS . ¢« ¢ ¢ ¢ ¢ ¢ o o o s o 0 3 .
Purpose of the Study . « « ¢ « ¢ ¢ ¢ ¢ ¢ o o o & 4 .
Benefits of the Study « ¢« « o o ¢ ¢ ¢ ¢ s o ¢ o & 4
SCOPE ¢ 4 o o 4 ¢ s 8 ¢ o 8 0 s e s e 0 s s s e s e s 5
Summary of Current Knowledge .« « ¢ o ¢ ¢ ¢ ¢ & « & o« 5
The Chomsky Hierarchy . « « ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ o & & 5 g
Backus-Naur Form . « 4 ¢ ¢ o ¢ o ¢ ¢ s+ o ¢ o o & 10 .
-. Semantic Definition Languages . « ¢« o ¢ o« ¢ « o &« 11 g
6- W-Grammars . . « « o o s o o o o o« s s s s s o o 13 i
= SUmMMATY . ¢ o o o o o« o o o o s o o o s o 0 o s o 14 by
APProach & v & o o o o o o o o s s o o o o o o o o & 14 .
Document Overview . « « « o s o o ¢ o ¢ ¢ o ¢ o o o & 15 2
-
II. Description of W-grammars . « « « o ¢ « o ¢ ¢ o o o & o & 16 -
Introduction . &+ o ¢ o o« o ¢ o o s o ¢ s o o o o o 16
TerminologY « o o« o o o o o o o o o o s o ¢ o o o o » 16 R
An AnalogY .« & 4 4 e o s s 6 6 o s e e s e e e e o 18 ,
Uniform Replacement Rule . « ¢ « ¢ ¢ ¢ ¢ ¢ ¢ o & o & 18 .
A Finite Example . o ¢« ¢ ¢ ¢ ¢ o ¢ o o ¢ s o ¢ ¢ o & 19 ’
A W-grammar for an Infinite Language . . . . . . . . 20
W-grammar SUMMATY o« « o o o s o o o o ¢ ¢ o o o o o 21

.
.

N
N

III.W—grammarA..........-o---o--o..

The Initial Translation

The W-grammar ToolS « &+ « ¢ ¢ ¢ ¢ o ¢ ¢ ¢ o o ¢ o o & 23 X
An Example . L] . L] L d . L L] L L] L] L L] . L] . ® . L] L] L] 23
Italicized Names . o o o ¢ o ¢ o o o ¢ o o o o o o« @ 26 .

b e N

N ‘.
~

i14 '




.'i.\;'

IV. w_grmaanoooo.oooooo..uo

Introduction

W-grammar B in Relation to W-grammar A

The Ada Program Concept . « « ¢« ¢« o + &«

LI BRARY ® & ¢ & © ¢ & s & s o

The Development of W-Grammar B

New Tools in W-Grammar B
The Ada Subset
Summary . « « o o o s o s o

V. Conclusion

Ada Constructs Not Covered in

Generics . . o ¢« s & o &
Tasks ¢ o ¢ ¢ ¢ ¢ o o o &
Overloading . . . + +. + &
Areas for Further Study . . .
Thesis Summary . . « « « « o«

Appendix A: W-grammar A . . « « « o « &
Appendix B: W—grammar B, . . . . . « &

Bibliography

Vita e ® o ® &8 o ¢ & » ° 3 e " e B " .

iv

..... . }.‘;.._ R

W-grammar

AL IR SR S R SPESEE SN .o ; SO RN
RN R R R RN 2% AR AR B N A R, L TP

=

«® ® o © 9
] * - L [ .

R R
ORNGAN KON KX QRN

. 28
. 28
. 29
. 29
. 35
. 35
. 37
. 39
. 40
. 40
. 40
. 41
. 41
. 42
. 43
. 45
. 63
. 69
. 71
R

RN

l-.
.
l.-
-

A
X
:
)

)
2

[/

RAAL |

v
[



R Al ok o K i Y Sl OFLSA L Rt B D le A% RO B A L o d Rak Tl Rl

e List of Figures

2
Figure Page
1. A Type 3 Grammar for Ada Identifiers . . . « v ¢« ¢ & o © 7
2, A Type 2 Grammar for Ada Identifiers . . . . . . . .« « & 8
3. The Chomsky Hierarchy « .« « ¢ ¢ ¢« o ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o« & 10
4, Some Hypernotions Used in W-grammar A . . « . « &« ¢« « « & 22
5. W-grammar B Development . . & & ¢« o ¢ ¢ ¢ o ¢ o s o o s & 35

List of Tables

Table Page
i‘% I. Italicized Terms in the Ada Language Reference Manual . . 26
II. Ada Constructs Included in W-grammar B . . . « ¢ o « « & 37
ITI. Compound Delimiters in W-grammar A . . . « « ¢« ¢ & + & & 46
v

.......

g p g e
L’I'-L\i\.v LSRN ON SO N g




e AFIT/GCE/ENG/86D-9

Abstract

-

This thesis explores the formal definition of the syntax and static
semantics of the Ada programming language. Several notational forms
were compared and the particular notational form chosen is a double
level grammar called the the W-grammar. W-grammars were first used in
the formal definition of Algol 68. Two W-grammars are presented. The
first W-grammar is a translation of the modified BNF notation used in
the Ada Language Reference Manual, and the second demonstrates the

description of Ada's static semantics in W-grammar format.
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I. Introduction and Literature Review ..
i Background -
i ,‘If.
i A common complaint about the Ada language is its complexity. The .
i .
claim that Ada is complex is borne out by the empirical evidence that -
| the first production quality compilers were not available until over :
\ -
| D
‘ four years after the language specification was complete. &
-)
Ada's complexity stems from its sheer size as well as its advanced ;
language constructs (14:4). Ada incorporates most of the modern Kﬁ
programming concepts of Algol 68, CLU, Modula, Modula-2, and Pascal in a %
ﬁ:‘ single programming language. The language structures pioneered by these =
" \
languages include block structure, strongly typed data structures, Y
'
separately-compiled code modules, and generic program units. To this by
Y
already large number of relatively new programming ideas, Ada adds
tasking, and the concept of identifier overloading—where a single ﬁ‘
identifier can have more than one meaning based on its context. It is -
true that none of the ideas are original with Ada, but attempting to “
combine so many new ideas into a single language has not been tried E
since PL/1, and at that time there were far fewer constructs to N
consolidate. i
* 3 ]
Ada is a8 registered trademark of the U.S. Government (Ada Joint
:;:_ Program Office). R
e '-:
1 =
.
'.-‘
N
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As modern as the language Ada is, the Ada Language Reference Manual
still uses a modified Backus-Naur Form (BNF) meta language notation for
the syntax, along with prose descriptions of the semantics (5:1-7 and
1-8). BNF was developed to describe ALGOL, one of the earliest
programming languages of all,

An example of the complexity of this methodology for language
description can be drawn from the definition of the context_clause in
Section 10.1.1 of the Language Reference Manual (5:10-2 and 10-3). The
context_clause defines the environment of the current source program and
is used to import publicly visible objects from other program units.

The BNF description of context_clause found in the Language

Reference Manual is as follows:

context_clause ::= {with_clause {use_clause})

with clause ::= with unit_simple_name (, unit_simple_name};

These two BNF statements are then followed by four paragraphs describing
the semantics of the statements. Not until the fourth paragraph is the
user told that 'unit_simple_name' must name a previously-compiled
library unit. The problem with the Language Reference Manual
description is not that BNF is too antiquated for language definition,
but that English is too imprecise a language for semantic
specifications.

If English were unambiguous there would be no problem with English

language specifications for Ada's syntax and semantics, but in fact the

ambiguity of English is one of the largest contributors to the

L PR

proliferation of the legal profession. English is the weakest part of
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the Ada language specification, and Ada gurus are often referred to as

"Language Lawyers."

The Problem

Syntax vs. Semantics. Compiler developers usually view a

programming language from the two aspects of syntax and semantics.

Syntax is the mechanical way tokens (the language symbols) are combined
to form well-structured language constructs. Semantics is the meaning
carried by a language phrase. Semantics can be broken down into two
types: static and dynamic.

Static semantics are often hard to distinguish from syntax. As an
example consider a simple English sentence with the syntax rule "subject
verb object period." The syntax allows such nonsense sentences as "Dog

' The static semantics of the same

are car." and "House bleeds her.'
sentences require subject-verb agreement between dog and are, and
prohibit intransitive verbs like bleeds in this context. In the

' would be

examples, neither "House bleeds her." nor "Dog are car.'
acceptable to the static semantic rules. Static semantics are often
referred to as context-sensitivity.

Even with the syntactic and static semantic rules above, sentences
of the form "subject verb object" can be formed which are nonsensical

such as "Dog is house."

The dynamic semantics, the abstract meanings of
the sentence, eliminate tue rest of these nonsense "sentences."
For a programming language, the syntax describes valid identifiers

and statements, static semantics describe valid blocks and programs, and

dynamic semantics describe what happens when a program is run.
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Several methods for describing syntax and semantics are discussed

later in this chapter,

Purpose of the Study. This study will consider ways to reduce

the complexity of the Ada language description by exploring the

definitions of Ada in terms of a formal grammar powerful enough to not

only reflect a language's syntax, but its semantics as well (both static

and dynamic). By using such a grammar to describe both the syntax and
semantics formally, we can remove the ambiguity and thus reduce the
complexity of English descriptions of the semantics. The type of
grammar chosen is the W-grammar (4:46), W-grammars are discussed
further in the summary of current knowledge.

Benefits of the Study. Expected benefits of a W-grammar

definition for Ada include:

1. A more concise Language Reference Manual. W-grammar
definitions have been shown to be smaller than equivalent context-free
grammar definitions (4:52-53).

2. A more precise Language Reference Manual. Expressing Ada's
semantics formally reduces the inherent ambiguities of English (13:437).

3. Better and more consistent compilers. The Language Reference
Manual is the basic compiler requirements document. With a better
requirements definition, compiler quality should improve.

4., The possibility of a true Ada compiler-compiler rather than
just parser generators (13:437).

5. A better understanding of Ada semantics and a basis for

further language improvements.
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Each of these expected benefits has ramifications to the Air Force and
the Department of Defense as a whole, but of special importance are 2,
3, and 4 which are directly related to the ongoing issues of Ada

portability and Ada program reliability.

Scope

This study attempts to begin a formal definition of the Ada
programming language syntax and static semantics by creating a W-grammar
description of Ada.

Specifically not covered by this study is compiler generation from
the W-grammar description. The purpose of this study is to clarify the
understanding of Ada syntax and semantics, and although potentially very
useful, a compiler generator does not fit within the stated thesis
purpose.

Portions of the standard Ada definition will not be covered in this
study--Chapters 13 and 14 of the Ada Language Reference Manual,
"Representation Clauses and Implementation-Dependent Features" and
"Input-Output". The Chapter 13 constructs are inappropriate due to the
specific system dependencies, and the chapter 14 constructs are already

formally defined (in terms of Ada itself).

Summary of Current Knowledge

This section explores existing alternatives to the methodology used
in the Ada Language Reference Manual.

The Chomsky Hierarchy (4:9-20, 7:217-232). In the 1950s, Noam

Chomsky defined five classes of phrase structure grammars. This

classification scheme has come to be known as the Chomsky Hierarchy.
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Phrase structure grammars are composed of four finite sets: the
terminal vocabulary Vt, the non-terminal vocabulary Vn, the
production set P, and a single distinguished non-terminal symbol S
called the root of the language. The five grammar classes within the
Chomsky Hierarchy are distinguished by the forms allowed in the set of
production rules.

The most restrictive class of languages, which Chomsky did not even
name, are the Finite Languages. Production rules in grammars of this

class must be of the form S -> x , where S is the designated symbol

*
and x is an element of Vt , the Kleene Closure of Vt'

R

It is easily seen that Finite Languages are simply a finite set of

*

designated strings. The expressive power of such languages is extremely

limited.

S

'i;. The next language type, Type 3, the Regular Languages have the

Finite Languages as a proper subset. These grammars have production

rules of the form A -> aB and A -> b where A and B are elements of

W R PR PR

Vn and a and b are elements of Vt'
These languages are those accepted by finite automata and have
limited use in describing programming languages. Grammars of this tvpe

are useful for such things as describing valid language tokens. For

'y -'..‘ l"',,'-{,l

example a Type 3 grammar for Ada identifiers is shown in Figure 1,
Type 2 Chomsky Languages are the Context-free Languages. 3

Production rules in context-free grammars have the form A -> n , where

A is an element of Vn and n is an element of V* (V is the union

of Vn and Vt).

SRR LR ss e N N e T e T I i T e




vl’l = (§'_A_}
S = (8)
P = {

jn

-> a,

ltn |
! |
vV

fn
|
\Y%
[+J

>

jn
I
v
N
>
-

b, S -> ¢,

— an identifier can be a single letter

Vt = (8-boC.---oX-Y.Z.A.B-C.- --olevZootlozv ---v7v8'9'_)

L ] ._S_—>x’_s_->y,§—>z,

A, S->B,S->C, ... , S->X,

S

>V, 8->z,

— an identifier is a letter followed by
—- a string

> {n
| |
v oV
[] >4
> 5

|n
}
v
[
>
wn
[}
v
N
S

|>
1
v
o
-
>

|>
i

v

>

o=
1
v
(a0

|5

=>1

> 1> > I> [|> |
i I I I ' '
v v v v A% A%
o > N o

> 1> = > > .
- - - - -

I> = |> |>

>
|
v
o
>

>

-> AA, A

-> 1A, A

—- a string may be
_> C' -uo,ﬁ_> x,

A->B,A->C, ...,

A_> 2, s sy

A-> Y,
A =X,

A7,

I

|

single character

-> z,

I 1
vV
o =<
N E
I I
v v
o N

-~ a string may be multiple characters

=> YA, A -> ZA,

-> 9, A->_A

"> CA, ..C'A_> xA' _A‘-> yA,

-> BA, A—> C_A_' es ey

-> ZA’ seey A‘) 7&,

Figure 1.

A Type 3 grammar for Ada Identifiers.




These grammars, of which BNF is a member, have sufficient power to
describe the syntax of any programming language. In fact, BASIC becomes
a context-free language if user-defined functions and arrays are not
allowed. Since Type 3 languages are a subset of Type 2 we can describe
the Ada identifier in a context-free grammar, but the added power of the
context-free grammar makes the definition more concise, Figure 2 is a

Type 2 grammar for Ada identifiers.

<3
"

{a,b,c,...,x,y,2,4,B,C,...,X,Y,2,0,1,2,...,7,8,9, }

<<
[

= {§vA]

(8)

wn
]

|tn
|

v
)

>

-- an identifier is a letter followed by
“‘ -- a string
- S->cA, ..., S->xA, S -> yA,

1%2)
|
A\
=2
-3
(%]

|tn
!
v
N
>

[%)

-> AA,

|

-> BA, S -> CA, ...,

17)
|
v
>
>

jwn

-> YA, S -> ZaA,

A > AA — a string is a sequence of strings

A -> a, -- a string may be a single character
A->b,A->¢c, ¢ee, A->x, A->y, A2,

A->A A->B,A->C, ..., A>X, A->Y, A-Z,

|>
I
A4
(=]
|>
|
A4
b
-

A_> 2, e ey A") 7,

(bead

-> 8, A->09,

>
U
v

Figure 2, A Type 2 Grammar for Ada Identifiers.



Type 1 Chomsky Languages are the Context-sensitive Languages.
Grammars for these languages have production rules of the form
uAn -> ukn , where u and n are elements of V*, A is an element of
Vn, and K is an element of V' (the Kleene Closure without the
empty string).

Context-sensitive grammars have sufficient power to enforce the
data type dependencies of programming languages and are therefore of
interest for their ability to describe programming languages. Most
useful languages are context-sensitive (7:224),

Here is a trivial Type 1 grammar from Cleaveland and Uzgalis which

describes the language a"b"c" where n > 0 (4:18):

Vt = {a, b, ¢}
V = (s, T, B, C, D)
n
P ={S->T, T->aTBD, T -> abD, DB -> CB, CB -> CD, CD -> BD,

bB -> bb, D -> ¢)

Type O languages, the least restrictive of the phrase-structure
languages, are referred to as the Recursively Enumerable languages.
These languages are of the form K -> u , where K is an element of
V' and u is an element of V*.

There are no trivial examples of recursively-enumerable languages
which are not also context-sensitive (4:19), so no example of a strictly
Type O grammar will be given.

Figure 3 illustrates the relationship between the different Phrase
Structure Languages and summarizes the restrictions on the production

rules of each type.
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LANGUAGES
CONTEXT FREF
LANGUAGES
REGULAR
LANGUAGES
%
v
_ 8bEV,
‘ii' ABEV,
wEve
pu,vEVve
2 € vy®
(4:20)
Figure 1. The Chomsky Hierarchy
Backus-Naur Form (BNF). Designed by John Backus and Peter Naur,
BNF was originally used to define the ALGOL language (2:917; 8:160-162).
BNF is able to describe Chomsky Type 2, or context-free languages
(7:77-79, 227). Most context-free languages used in language
description are similar to BNF; the Ada Language Reference Manual uses a
modified form of BNF. The traditional BNF description of an Ada context
clause would be:
Ex
10
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v

<context clause) ::= <context clause> <with portion)> |
<with portion)> ::= <with portion> <with clause)> <use portion> |

<use portion)> ::= <use portion> <use clause) |

<with clause> ::= with <unit simple name list)>;

<unit simple name list)> ::= <unit simple name)> |

<unit simple name list>, <unit simple name)>

Note that this description is significantly longer than the Ada
Meta Language where {...)} means "zero or more times" and [...] means
"zero or one time." Both BNF and the Ada Meta Language are sufficiently
powerful to express the syntax of any programming language, but since
they are Type 2 grammars, they cannot express the context-sensitive
static semantics of programming languages.

BNF and its derivatives are the most widely used vehicles for
programming language syntax specification. Because of this, several
compiler generation tools are based on BNF, For example, the UNIX (UNIX
is a trademark of AT&T) operating system contains a tool called yacc
(yacc is an acronym for yet another compiler compiler) which
takes a context-free grammar as input and produces a set of tables used
to generate a parser (l: YACC manual page).

Semantic Definition Languages. Two common tools for describing

static semantics are attribute grammars and the tree grammars such as
the Vienna Definition Language.

According to Reps, et al, "an attribute grammar is a context-
free grammar extended by attaching attributes to the symbols of the

grammar” (9:451), Attribute grammars have been used extensively for

11
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e language specification and automated language tools (3; 9; 10), ;f
KN X
' including generation of an Ada compiler (14). :
Uhl et a1l (14) have produced an Ada compiler using an attribute i
grammar called ALADIN (A Language for Attribute DefINition) and an :
.
automated compiler front-end generator called GAG (Generator for <
Attribute Grammars). The ALADIN code for the syntax portion of the ;
context clause example follows: :i
RULE r_214 : e
CONTEXT ::= context CONTEXT_ELMS -
RULE r 215 : 3
CONTEXT_ELEMS e 3
RULE r_216 :
CONTEXT_ELEMS = CONTEXT_ELEM CONTEXT_ELEMS
RULE r_217 :
] CONTEXT_ELEM = with NAMES 'Z'
i‘ RULE r_218 : -
CONTEXT_ELEM = USE ~
N
“
Vienna Definition Language (VDL) uses tree structures to represent v
both the syntax and semantics of a programming language (15:1445), It .
has been used to define several programming languages (4:45; 15:1447). i
It consists of a syntactic meta language and a semantic meta language. :
The syntactic meta language groups related syntactic elements in a tree .f
structure called the "abstract syntax.”" The concrete syntax, the actual ;
order of lexical elements in the language, must still be specified by ’
some other formal method (usually BNF). The semantic meta language is a =
~
type of assembly language for a "VDL Machine." It can be analyzed by a s
o
VDL interpreter program. 2
2 8
-’.
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The abstract syntax of the context clause might be expressed as

.
D

follows:

context_clause = ((<sl : with_clause> <s, : use_part>),)

B X pf“*'. o,

use_part = (use_clause,)

with clause = (<s -~ op : with> <8 : name_list>)

name_list = {(<s1 : name> <s - Op : ,> <52 : name_list>), name,)

AR RRANR
R .

In addition to attribute grammars and the Vienna Definition

4

Language, compiler semantics have been designated by compiled output for

PR

some particular machine architecture. If a compiler produces code which

maps into the specified compiled output, then the compiler is correct.

The machine architectures used for such language definitions are often

similar to the p-machine used by some Pascal compilers, but real

Y YNERA

machines have been used, and McCarthy actually used LISP as its own

* 7 AN

definitional language in one of the early papers. (11)

W-Grammars (4). Cleaveland and Uzgalis present an alternative

(AR

family of grammars called double-level grammars or simply "W-grammars"

after their developer Aad Van Wijngaarden who first used them in the

'.- Celaee ° £

formal description of Algol 68. "W-grammars are composed of two

2

context-free grammars: one grammar generates elements that are placed in
model production rules, thereby creating rules in the second grammar;
the second grammar is used to generate the language.” (4:46).

W-grammars are more compact than context-free grammars and have

been proven to be Type O grammars, general phrase structure grammars.

erer
o)

Cleaveland and Uzgalis have shown the power of W-grammars by fully

PV 4

defining the syntax and semantics (both static and dynamic) of a




o nontrivial programming language called ASPLE (A Simple Programming
A
A}*
= Language Example).
The following is a W-grammar expression of the context clause

example:

context_clause : with part repeated.
with part : with_clause, use_clause repeated.

with_clause : with symbol, unit_simple_name list, SEMICOLON.

This example represents the syntax of the context clause but fails
to illustrate the full expressive power of the W-grammar which could
also ensure the context-sensitivity of each unit_simple_name (each name
must have been previously compiled into the program library). A
complete description of W-grammars will be given in Chapter II.

‘iﬁ Summary. Most of the work currently being done on semantic
description of programming languages is with attribute grammars. This
is probably due to the availability of tools such as yacc and GAG (16).
W-grammars, developed by Aad Van Wijngaarden hold promise as powerful
descriptive tools for combining the syntactic and semantic language

descriptions into a single expression.,

Approach

After examining the available methods for expressing the semantics
of programming languages, W-grammars were chosen. W-grammars have the
same expressive ability as attribute grammars or the Vienna Definition
Language. However, because W-grammars can include both syntactic and
semantic information in the same expression, they make an intuitive link

.i;} between syntax and semantics which is less evident in the other methods.

14
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The original approach to the design of a W-grammar for Ada was to

-
a

-é‘..

implement a series of W-grammars for successively larger Ada subsets.
It was discovered that subsetting Ada conflicts with the design goal of
creating a document which parallels the Ada Language Reference Manual,
so the "first cut" grammar is now a rather literal translation of the
Ada meta language into W-grammar format., The generation process was
invaluable for becoming familiar with W-grammars and in identifying
W-grammar "tools" which would aid in the second step.
The second step in the translation process was to choose a basic
Ada construct around which a W-grammar could be built—the distinguished
non—-terminal symbol of a phrase structure grammar. This symbol was then
used as the root of a tree upon which the Ada W-grammar could stand.
The tree was expanded as many levels as was possible in the time
‘. available for the study. The context-sensitive information gleaned from
7 the Ada Language Reference Manual was added to the W-grammar at this

time.

Document Overview

The organization of this document parallels the approach discussed
in the previous section., Chapter 1I gives an introduction to W-grammars
along with several examples to bring the reader "up to speed" with the
terminology used and the structure of W-grammars. Chapter III describes
the process used to generate W-grammar A, the direct translation from
Ada meta language format. Chapter IV presents W-grammar B which
attempts to include static semantic information in the W-grammar.
Chapter V presents Ada constructs not covered in W-grammar B, areas

S worthy of future study, and a8 summary of the entire thesis.
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II. Description of W-grammars

S 7
Introduction
As stated in the previous chapter, Aad Van Wijngaarden developec.
the meta language referred to as the W-grammar, as a descriptive tool to
aid in the formal definition of Algol 68. Cleaveland and Uzgalis 2
(4:45-89) give a detailed description of W-grammars as well as many Ei
examples, Their nomenclature and syntax for W-grammars differ slightly 5‘
from the original, and this thesis will follow their description. :;
Terminology Ei
The character set of W-grammars is separated into three distinct =
groups: large syntactic marks, small syntactic marks, and separators. ;E
Large syntactic marks, commonly called 'capital letters,' are combined ij
i‘ to form language tokens called metanotions. Small syntactic marks, i
commonly called 'small letters,' combine to form protonotions. As ;:
in the case of phrase structure grammars one protonotion is selected as ;:
the distinguished symbol (unless otherwise noted, the distinguished {:
symbol is 's'). Metanotions and protonotions are combined to form :&
possibly empty strings called hypernotions. Separators, the double ::

colon ('::'), colon (':'), semicolon (';'), and period ('.') carry

special meaning in the formation of the W-grammar rules. The double and

single colon symbols are assignment symbols; the semicolon separates

rule alternatives; and the period is a rule terminator.

80t ¥

Ao
- la

A W-grammar is composed of two sets of rules, metaproductions

PAASAY

and hyper-rules, which are combined to form a set of production

rules.

> %
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The metaproductions each define a metanotion. Following is a BNF

KR AR

description of a metaproduction.

%
<{metaproduction> ::= <{metanotion)> :: <{sequence of hypernotions> . E
<sequence of hypernotions)> ::= <hypernotion) | :if

<sequence of hypernotions)> ; <hypernotion> 2
The metaproductions form a grammar with metanotions as non-terminals and iii
R

protonotions for terminals., -
The hyper-rules form templates for production rules. Here is the ,;

BNF description for a hyper-rule. E
!.s v

<hyper-rule> ::= <hypernotion> : <sequence of hyperalternatives) . -
<sequence of hyperalternatives> ::= <hyperalternatived> | 5_
<sequence of hyperalternatives)> ; <hyperalternative)> ?
<hyperalternative> ::= <hypernotion> | -
<hyperalternative> , <hypernotion> E\

The hyper-rules are a set of rules where the non-terminals are N
<

hypernotions and the terminals are protonotions. f;
The production rules are a possibly infinite set of rules generated i;
by combining the hyper-rules and metanotions whose terminals are >{
protonotions ending in 'symbol.' Ez
N

<production rule> ::= <protonotion) :: {sequence of prodalternatives)> . ::
{sequence of prodalternatives> ::= <prodalternative> | z:
<{sequence of prodalternatives)> ; <{prodalternative) EE.
<{prodalternative) ::= <protonotion> | {prodalternative)> , <protonotion> :;'
- . - .
17 %
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An_Analogy

The nomenclature and syntax of W-grammars can be overwhelming the
first time they are encountered. A way to simplify the W-grammar
concept is to use your existing knowledge by drawing an analogy between
W-grammars and programming languages.

The metaproductions form the declarative part of a W-grammar. Each
individual metaproduction is like a variable declaration for &
metanotion which acts as a W-grammar variable. And the hypernotions
right of the double colon define the type of the variable.

The hyper-rules form the procedural portion of a W-grammar. Each
hyper-rule is like a function which takes metanotions as inputs and
returns production rules as outputs.

At a global level, W-grammars are like programs which continuously
produce members of the set of strings referred to as the language of the

W-grammar.

Uniform Replacement Rule

The hyper-rules and metanotions are combined in a manner called the
Uniform Replacement Rule,

As stated above, the hyper-rules form a pattern for the production
rules. Production rules are generated from hyper-rules by replacing any
metanotion by a terminal metaproduction of that metanotion. If any
metanotion occurs more than once in the hyper-rule, each occurrence of
the metanotion is replaced by the same terminal metaproduction.

An extension to the W-grammar which adds no power, but increases
brevity and readability is to treat metanotions which are the same

except for possibly a digit as their right-most character, as if they

18




share the same defining metaproduction, but as distinct metanotions with
regards to the Uniform Replacement Rule,
In the programming language analogy, the Uniform Replacement Rule

can be viewed as a rule for binding variables to values.

A Finite Example

Following is an example of a W-grammar with a finite number of

production rules to illustrate the Uniform Replacement Rule.

Metaproductions

ALPHA :: a; b.

Hyper-rules

s ¢ t; u.

t : letter ALPHA symbol, letter ALPHA symbol.

i" u : letter ALPHAl symbol, letter ALPHA2 symbol.

After applying the Uniform Replacement Rule to the hyper-rules we

end up with the following set of production rules.

s : t; u.

t : letter a symbol, letter a symbol.
t : letter b symbol, letter b symbol.
u : letter a symbol, letter a symbol.
u : letter a symbol, letter b symbol.
u : letter b symbol, letter a symbol.

u : letter b symbol, letter b symbol,.

Note the difference in the hyper-rules for t and u and how the Uniform

S Replacement Rule affected the output.




&2 Led B

v A W-grammar for an Infinite Language
e
Ry The following W-grammar describes the language of all strings
consisting of zeros and ones with an odd number of ones. '
Metaproductions ;
ZEROETY :: EMPTY; ZEROETY zero symbol. a
EMPTY :: . <
Hyper-rules M
s : ZEROETY1l, one symbol, ZEROETY2; .
ZEROETY1l, one symbol, ZEROETY2, one symbol, s. -
r
Replacing ZEROETY1 and ZEROETY2 by EMPTY yields:
‘.
s : one symbol; one symbol, one symbol, s. A
i
*
‘:‘ which covers the cases (11) 1 . Replacing ZEROETY1l by zero
) symbol and replacing ZEROETY2 by EMPTY yields: :&
s : zero symbol, one symbol; zero symbol, one symbol, one symbol, s. f
* :
which covers the cases (011) 01 . Combination of the two ;
* g
production rules yields (011 + 11) (01 + 1) . The reader should -
generate additional production rules until he is satisfied the W-grammar
covers all the possible cases.
Notice how the metanotion EMPTY is used to make the grammar
more concise., Note also that two metanotions and one hyper-rule can
represent an infinite number of production rules.
20
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W-grammar Summary

This chapter presented an introduction to a descriptive language

developed by Aad Van Wijngaarden called the W-grammar.

W-grammars consist of a series of metanotion definitions called
metaproductions and one or more production rule templates called
hyper-rules. The production rules, whose terminals end in symbol,
are formed by replacing the metanotions in the hyper-rules according to
the Uniforz Replacement Rule, so that a finite number of metaproductions
and hyper-rules can generate a possibly infinite number of production

rules.

Now that the preliminaries are complete, we can begin to create the

Ada W-grammar,




The Initial Translation

The first iteration of the Ada grammar, W-grammar A, is a literal
translation of the Ada meta language definitions from the Ada Language
Reference Manual. A literal translation was chosen as a way to become
more acquainted with W-grammars, and as a way to capitalize on the
existing formal syntax definition, as well as a way to insure the
complete language is addressed.

W-grammar A appears in Appendix A, The chapter and section numbers
in the appendix relate to the section number of the corresponding

context-free grammar rule in the Ada Language Reference Manual.

Metaproductions

CHAR :: a; b; c; d; e; £; g5 h; i5 js; k; 1; m; n; o; p; q; r; s; t; u;
V; W3 X3 Y Z5 .

NOTION :: CHAR; NOTION CHAR.

EMPTY :: .

Hyper-rules

NOTION option : NOTION; EMPTY.

NOTION repeated : NOTION repeated, NOTION; NOTION; EMPTY.

NOTION list : NOTION; NOTION list, comma symbol, NOTION.

NOTION sequence : NOTION; NOTION sequence, semicolon symbol, NOTION.

NOTION pack : left parenthesis symbol, NOTION list, right parenthesis
symbol.

NOTION group : left parenthesis symbol, NOTION sequence, right
parenthesis symbol.

Figure 4. Some Hypernotions Used in W-grammar A.
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The W-grammar Tools

A series of metaproductions and hyper-rules influenced by

Cleaveland and Uzgalis (4:53-62) were developed to aid in the
translation process. These metanotions, shown in Figure 4, are designed
to replace the bracket and brace extensions to BNF used in the Ada
Language Reference Manual.

The underscore character was included for use in W-grammar A so the
identifier names used in the Language Reference manual could be used in
the W-grammar also., A specific underscore should be considered as a
large or small syntactic mark depending on the case of the word it is
in., Underscores not part of a word are considered to be small syntactic
marks.

The option and repeated constructs replace the square bracket
and brace symbols of the Ada meta language. A W-grammar option clause
causes the clause suffix to be considered optional since the protonotion
NOTION option may be replaced by either NOTION or EMPTY. The
repeated clause works similarly in that the clause suffix represented
by NOTION may occur zero (EMPTY), once, or several times.

Other W-grammar constructs developed include the list, a series
of NOTIONs separated by commas, and the sequence which is similarly
separated by semicolons. In addition, pack and group are

respectively a list and a sequence surrounded by parentheses.

An_Example

The meta language to W-grammar translation which generated

W-grammar A was a simple mechanical process. It consisted of replacing

the BNF assignment symbol '::=' by ':', separating the language notions

23
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by commas, and inserting the option and repeated protonotions in

ot

¢ "'

Cﬁ; place of brackets and braces in the Ada meta language. A representative
Ada construct, the task declaration, is converted from the Ada meta
language to W-grammar A form below.

The original Ada BNF representation (5:9-2) is:
task _declaration ::= task specification;
task_specification ::=
task [type] identifier [is
{entry_declaration}
{representation_clause}
end [task _simple namel]
task body ::=
task body task _simple name is
[ declarative part)
begin
sequence_of_statements
[ exception
exception_handler
: { exception_handler)]

‘.‘ end [task simple name]);

Translating the first line simply requires changing the assignment
symbol and separating the right-hand notions by commas. The metanotion
SEMICOLON is used to represent the statement terminator. The
metaproduction for SEMICOLON is

SEMICOLON :: semicolon symbol,
With these changes the first expression becomes:

task_declaration : task_specification, SEMICOLON.

The W-grammar expression for task_specification reveals another
convention adopted for the Ada W-grammars: Ada reserved words are

DO

24
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treated as atomic symbols. In the W-grammar, a reserved word is
represented by that word followed by the production rule terminal
designator symbol.

An English description of the task_specification description given

above might say:

The task_specification begins with the reserved word task

and the optional reserved word type followed by an

identifier. The remainder, which is also optional, consists

of the reserved word is followed by zero or more

entry_declarations immediately followed by zero or more

representation_clauses, and terminated by the reserved word

end followed by an optional task simple_ name.

In order to increase readability in the W-grammar, the large
optional portion beginning with is is moved to a separate definition

called is_part. The W-grammar definition of task_specification is:

task_specification : TASK, TYPE option, identifier, is_part option.
is part : IS, entry_declaration option, representation_clause
option, END, task_simple name option, SEMICOLON,
TASK, TYPE, IS and END are metanotions representing the terminal
protonotions task symbol, type symbol, is symbol, and end
symbol.
Finally, the W-grammar translation for task_body is:
task_body : TASK, BODY, task simple name, IS, declarative_part
option, BEGIN, sequence_of statements, exception_part
option, END, task simple_name option, SEMICOLON,

exception_part : exception_handler, exception_handler option.

exception_part, like is part, was created to increase readability.

25
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Italicized Names

5

Although W-grammar fully describes Ada's syntax, it fails to
reflect any semantic information. An indication of this is the number
of names used which have italicized parts in the Ada Language Reference
Manual, where "the italicized part is intended to reflect some semantic
information" (5:1-8).

The italicized names found in the Ada Language Reference Manual are
listed in Table I. These items are used in the Ada Language Reference
Manual and W-grammar A to represent specific declared items whose use in
the program depend on the actual context. These constructs must be

further defined in the W-grammar to reflect their context-sensitivity,

Table I, 1Italicized Terms in the Ada Language Reference Manual,.

Section Term

argument_identifier
universal_static_expression
type_name

subtype_name
range_attribute
static_simple_expression
component_subtype_indication
discrete_subtype_indication
discriminant_simple_name
component_simple name
variable name
boolean_expression
loop_simple_name
block_simple_name

label name

procedure_name
function_name
parameter_simple name

7.1 package_simple_name

8.4 package_name

8.5 object_ name

T2 exception_name =3
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Table I. Italicized Terms in the Ada Language Reference Manual (cont.).

Section Term

subprogram or_entry_name

9.1 task_simple_name

9.5 entry_name
entry_simple_ name

10.1.1 unit_simple name

10.2 parent_unit_name

12.3 generic_package name

generic_procedure_name
generic_function_name
subprogram name

13.3 type_simple name
component_name
static_range

13.8 record_aggregate

The items in this list represent identifiers or expressions. The
static semantics of each of these is similar in that each depends on a
previous declaration or on the inherent type of a constant.

A typical example from this group is procedure_name. The static
semantics require a procedure to be defined before it can be called. A
definition of procedure_name reflecting this requirement can be

produced in a W-grammar:

procedure_name :: IDENTIFIER, where IDENTIFIER is defined

with type PROCEDURE.

The static semantics problem is in defining the context-sensitive phrase
where NOTION]1 is defined with type NOTION2 in such a way that the
phrase can be parsed by the W-grammar. The static semantics problem is

addressed in the second W-grammar found in Appendix B and discussed in

Chapter IV,
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IV, W-grammar B

Introduction

W-grammar B found in Appendix B contains a partial Ada grammar
displaying a method for expressing Ada's context-sensitivity in
W-grammar form. This W-grammar is a complete syntactic and static
semantic description of an Ada compilation down to the
package/subprogram level. It successfully demonstrates the ability of
W-grammars to not only express Ada's syntax but its static semantics as
well. This chapter describes the development and structure of

W-grammar B.

W-grammar B in Relation to W-grammar A

The original motivation for creating W-grammar A was to build a
framework to which static semantic restrictions could be added to create
a context-sensitive W-grammar, Early in the development of W-grammar B
it became apparent that the nature of a W-grammar which included
semantic information was very different from the purely syntactic
W-grammar A. Therefore, a better grammar would result from a whole new
development rather than from trying to coerce the W-grammar A design
into a context-sensitive form.

W-grammar B utilizes the knowledge gained while designing W-grammar
A about W-grammar design, as well as how to make Ada constructs fit into
W-grammar descriptions. In addition, most of the W-grammar tools shown

in Figure 2 were used in designing W-grammar B.
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The Ada Program Concept

W-grammars, BNF, and phrase structure grammars require a concept
called the "distinguished symbol" or "the root of the language"
(4:9-10). For most languages, the language root is a symbol
representing a compiled program. Separate compilation is handled by
ignoring the static semantics of separately-compiled subroutines until
link time. Ada is different from most languages in that it requires the
semantics of separately compiled program units to be checked through the
use of the library. Therefore there is really no Ada equivalent of a
stand-alone program: every Ada program is compiled in the context of the
existing Ada program library.

The clause LIBRARY compilation from hyper-rule B.34 is a rough
equivalent for an Ada language root: the "distinguished non-terminal
symbol" of BNF or a phrase structure grammar. This clause is a
hypernotion (containing a metanotion, a W-grammar 'variable') rather
than a protonotion (a W-grammar 'constant'). The true root ¢ the
language must be a protonotion since it must be a non-terminal of a
production rule, The true Ada root would be something like
environment which would include all the predefined packages as well as
all library units which have ever been compiled into that particular Ada
program library.

LIBRARY compilation clearly infers the semantic fact that all

compilations must take place in the context of the program library.

LIBRARY

To handle the context-sensitivity of an Ada compilation the

LIBRARY clause was developed. LIBRARY is defined in Metaproduction
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N B.K as a series of library entry clauses separated by mextentry and

~
L

terminated by endlibrary. LIBRARY serves as a type of symbol table

2
of previously compiled library units as well as the Ada predefined Z:
environment. It carries all the syntactic and semantic information 5‘
necessary to describe the current compilation environment. The clause R
library entry is defined by Hyper-rule B.14 as a NAME followed by a ;3‘
DESCRIPTION; there is one library entry for each previously defined i;
library unit. ;;
A NAME, Metaproduction B.J, is a series of characters each é;
separated by the token name. The NAME portion of a library entry ;{
represents the identifier associated with the library entry. Using "
the name tokens simplifies the process of locating the particular Eéi
library entry within LIBRARY. 5;
‘i3 DESCRIPTION is the part of a library entry which lists the A
attributes of the object represented by the library entry. Ei
DESCRIPTION is defined by Metaproduction B.R. S
To illustrate how the LIBRARY concept works in W-grammar B
consider the following hyper-rule for construction of a foo construct.
LIBRARY foo construct : foo symbol, IDENTIFIER print, SEMICOLON,
where ID is in LIBRARY .
and ID describes IDENTIFIER. ;;
This hyper-rule describes something which could be described in BNF by .E

<foo construct> ::= foo <identifier) ;

with the additional constraint that the IDENTIFIER be declared in

‘a'te
N
[N

30




'.'.{Qf}

LIBRARY. This is clearly a context-sensitive constraint. Now we will
analyze how this rule is used to parse a language string.

Comparing the BNF and W-grammar rules, one can easily see that the
first three hypernotions on the right side of the colon describe the
syntax of the foo construct. Therefore the where portion of the
description must describe the static semantics,

How does it work? Remember from Chapter II that the terminal
protonotions of the production rules must end in symbol. The where
clause is formed so that it parses into an empty string or a protonotion
not ending in symbol. If the where clause goes away (parses into an
empty string) then the static semantics are correct, but if it reduces
to any other protonotion, it won't be a terminal and therefore the
grammar won't be able to parse the candidate string.

Consider the statement

foo junk;

This statement should parse if and only if junk is in the library.
Consider the case where the statement is correct:
1. 1If the statement is correct, then junk must be in the library.
2, TIf junk is in the library, then LIBRARY, which reflects
the contents of the library, must be of the form
"nextentry...nextentryname jnameunamennamekkindof...endlibrary"
where the ellipses contain other characters with which we
are not concerned.
3. If junk is in the library, then the library entry for

junk is of the form

31
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"name jnameunamennamekkindof..." which is also a substring

ry
l.l..
2lr

of LIBRARY.
Now substitute the appropriate strings into the hyper-rule (don't forget
the Uniform Replacement Rule which applies to the multiple instances of
LIBRARY, IDENTIFIER, and ID). The original rule is:
LIBRARY foo construct : foo symbol, IDENTIFIER, SEMICOLON,

where ID is in LIBRARY
and ID describes IDENTIFIER.

Where ID is defined by metaproduction B.L:
ID :: library entry.
Substituting for LIBRARY and ID gives us

nextentry...nextentryname jnameunamennamekkindof...endlibrary
~ foo construct : foo symbol, IDENTIFIER, semicolon symbol,
.-‘ where name jnameunamennamekkindof... is in
nextentry...nextentryname jnameunamennamekkindof...endlibrary
and name jnameunamennamekkindof... describes IDENTIFIER.

Applying metanotion B.I,

IDENTIFIER :: LETTER; IDENTIFIER, UNDERSCORE option, LETTER option,
DIGIT option.

we can obtain

IDENTIFIER :: junk.

Note that the Uniform Replacement Rule does not apply to

metaproductions,

<.
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.- Substituting again, we get E
O 3
. )
nextentry...nextentryname jnameunamennamekkindof...endlibrary *
foo construct : foo symbol, junk print, semicolon symbol, .
where name jnameunamennamekkindof... is in -
nextentry...nextentryname jnameunamennamekkindof...endlibrary 3
and name jnameunamennamekkindof... describes junk. o
Then hyper-rule B.1l4 can be used to fora the production rule ;:
junk print : letter j symbol, letter u symbol, letter n symbol, L:‘
letter k symbol. Pl
Substituting once again gives us -
nextentry...nextentryname jnameunamennamekkindof...endlibrary -
foo construct : foo symbol, letter j symbol, letter u symbol, %
letter n symbol, letter k symbol, semicolon symbol, »
where name jnameunamennamekkindof... is in "
nextentry...nextentryname jnameunamennamekkindof,..endlibrary ny
. and name jnameunamennamekkindof... describes junk. .
i“ e
which gives us the complete syntactic structure, f}
o
Now for the semantics... :?
The last protonotion is of the form of hyper-rule B.23: .i
where NOTETY1 and NOTETY2 : where NOTETY1l; where NOTETY2. X
Substituting 'namejnameunamennamekkindof... is in
nextentry...nextentryname jnameunamennamekkindof...endlibrary' for ;
W
NOTETY1 and 'name jnameunamennamekkindof... describes junk' for NOTETY2 o
we get:
]
o~
"
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where name jnameunamennamekkindof... i8 in
nextentry...nextentryname jnameunamennamekkindof...endlibrary and
name jnameunamennamekkindof... describes junk :
where name jnameunamennamekkindof... is in
nextentry...nextentryname jnameunamennamekkindof...endlibrary,
where name jnameunamennamekkindof... describes junk.

Substituting once again into the original equation:

nextentry...nextentryname jnameunamennamekkindof...endlibrary
foo construct : foo symbol, letter j symbol, letter u symbol,
letter n symbol, letter k symbol, semicolon symbol,
where name jnameunamennamekkindof... is in
nextentry...nextentryname jnameunamennamekkindof.,.endlibrary,
where name jnameunamennamekkindof... describes junk,
Now the where...and clause has become two simpler where clauses,
Working right to left we find that the last where clause matches
B.29 and that the other where clause matches B.19, The B.19
resolution is trivial, but the B.29 resolution requires several
applications of hyper-rule B.29, and for the sake of saving space, the
completion of this exercise is left to the reader.
The final production rule is
nextentry...nextentryname jnameunamennamekkindof...endlibrary

foo construct : foo symbol, letter j symbol, letter u symbol,
letter n symbol, letter k symbol, semicolon symbol.

which maps into the syntax
foo junk;

and brings us back where we began. If junk had not have been in the
LIBRARY structure, the where clauses would not have resolved to
EMPTY and the statement 'foo junk;' would have been impossible to

parse and hence not part of the language.

34
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The Development of W-grammar B

After the language root LIBRARY compilation was defined,
W-grammar B was developed in a tree-like manner; Figure 5 represents
the development strategy followed. Hyper-rule B.34 is equivalent to the
similar Ada meta language statement in Section 10.1 of the Ada Language

Reference Manual (5:10-1).

LIBRARY compilation (B.35)

LIBRARY compilation unit (B.36)
/ \

/ \
LIBRARY library unit ID (B.37) LIBRARY secondary unit ID (B.38)
LIBRARY subprogram declaration ID library unit body ID
T (B.47) (B.39)
subprograrm specification ID (B.48) LIBRARY subprogram specification
(B.49)
/
LIBRARY context clause (B,40) LIBRARY validate FORMAL PART
/ \ (B.50)
/ \
LIBRARY IDS use part (B.41) LIBRARY IDS with clause (B.42)
\
\
LIBRARY IDS use clause (B.45) LIBRARY IDS with part (B.43)
LIBRARY IDS package (B.46) LIBRARY with part (B.44)

Figure 3. W-grammar B Development.

New Tools in W-grammar B. Before describing the basic constructs

which appear in Figure 5, we will examine the peripheral hyper-rules

necessary to add static semantics to the Ada W-grammar,
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Rules B.17 through B.34 (beginning with the symbol where) form a

- set of boolean expressions which give the W-grammar the expressive power
to selectively parse only expressions which are correct by the
context-sensitive rules of W-grammar B. These rules work because
W-grammar production rules terminate with clauses ending with the symbol
symbol. If the where... clause is true it will parse to EMPTY and
cease to exist; if it is false it will not parse to EMPTY or a clause
ending in symbol resulting in a 'dead end' parse tree—an invalid
language construct.

Rules B.18 through B.22 handle equality of strings. Note that
proving things not equal is harder than proving them equal. It is easy
to search one string for the presence of another string in a W-grammar
using a structure like NOTETY1 STRING NOTETY2. But in order to search

'ili for the absence of a string you must search the larger string by
’ "peeling it off" one character at a time.

Rules B.23 through B.26 check for membership in a string. These
clauses are the most useful for adding context-sensitivity since the
static semantic information is kept in long strings called LIBRARY and
IDS.

Rules B.27 and B.28 are the boolean operators and and or. They
do not behave exactly like their mathematical counterparts and care must
be taken when using them--especially when mixing and and or. This is
because they are string manipulators and have no precedence order.

Rules B.29 through B.34 are used to check semantic information kept

in an ID. B.29 and B.30 are used to check whether a particular ID
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describes a particular IDENTIFIER, and B.31 through B,34 check the

“u
W attributes of the ID.

The Ada Subset, The rest of the rules, B.34 through B.54,
describe the Ada subset implemented in W-grammar B, Due to time
constraints, only a subset of Ada was considered. The actual Ada subset
is small and nonfunctional having only 16 semantic constructs, but it is
sufficiently large to demonstrate the context-sensitivity of the
W-grammar. The Ada syntactic units included are listed in Table II.

Table II. Ada Constructs Included in W-grammar B.
Ada Language Reference Manual Section Ada Constructs
| 2.1 graphic_character
basic_graphic_character
basic_character
i‘ 2.3 identifier
3.9 proper_body
6.1 subprogram declaration
subprogram-specification
formal part
parameter_specification
mode
8.4 use_clause
10.1 compilation
compilation unit
library_unit
secondary_unit
library_unit_body
10.1.1 context_clause
with_clause
10.2 subunit
S
37
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As stated above, rule B.35 describes the clause LIBRARY
compilation which is used as the root of the language. It is defined
as a series of compilation units.

Rule B.36 expands a compilation unit as a context clause followed
by either a library unit or a secondary unit. A library unit, rule
B.37, is a separate program unit which upon compilation becomes a part
of the program library. Subprogram bodies can be either library units
or subunits depending on whether the subprogram has been declared to the
library. The correct type of subprogram body is identified with B.37 by
the clause where ID is not in LIBRARY.

B.38 is the definition of a subunit. Subunits must already have
been defined in the library at compilation time; these semantics are
enforced by the clause where ID is in LIBRARY.

'i; Rule B,39 describes a library unit body as either & subprogram body
or a package body.

A context clause is described in rule B.40 as a with clause
followed by a repeated use part, and rule B.41 describes the use part
as the symbol use followed by repeated use clauses. The with
clause, rule B.42, is with followed by a with part ending with a
semicolon,

Rules B.43 and B.44 describe the with part. The rules require
that all the IDs in IDS and only those IDs are referenced. These

two rules form a recursive definition with B.44 forming the escape

clause.
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A B.45 defines the use clause, and B,46 enforces the rule that the

-\ !~ ¥

packages used in the use clause were referenced in the previous with
clause.

Rules B.47 and B.48 define the subprogram declaration referred to

L oY gt
¥ o 5, 4, &

by B.37, rules B.49 and B.50 define subunits as referred to in B.38,

Summary
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This chapter presented the development of a partial W-grammar for

A

Ada which can handle syntactic and static semantic requirements of

" 2

AR

compilation units through the declaration of the top level program

units, Static semantics were handled through the use of a

symbol-table-1ike LIBRARY construct which represents the programming

-
L

ay
[

library environment, and selective parsing of valid expressions was done

(A

- through where... clauses which parse only when presented with a true

expression.
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V. Conclusion

O
‘:'J-:'
This chapter covers the possibility of representing several other
Ada syntactical constructs in W-grammar form, topics which appear worthy
of future study, and finally, a summary of the entire thesis document,
Ada Constructs Not Covered in wW-grammar B
Ada constructs considered are those originally thought hard to
represent in W-grammar form due to the advanced nature of their
semantics. The increased familiarity with W-grammars and with the
description of Ada static semantics in W-grammars gained while designing
the two W-grammars described in this document has helped the author see
simple (though not trivial) implementation solutions for the static
semantics for each construct.
i’i These solutions were not addressed in W-grammar B due to time
constraints. The specific Ada constructs addressed are generic units,
tasks, and overloading.
Generics. Generic units should not be difficult to incorporate
in a W-grammar. The generic definition could be added to the library
like any other definition and the instantiation would simply add the
instantiated name along with any parameters to the library as well,
As an example, a possible W~grammar hyper-rule for generic ::}
.\.
instantiation might be. }:1
3S
-
LIBRARY generic instantiation : :f
NOTION1, IDENTIFIER1, IS, NEW, IDENTIFIER2, ID actual part, :ﬂ
where ID is in LIBRARY, 5
where ID describes IDENTIFIERI, N
where ID kind generic NOTIONI1. o
N
-— '1
BN
AN
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This rule requires the definition of NOTION actual part which is
analogous to generic_actual part in the Language Reference Manual, but
all the other clauses in this definition have previously been defined
in W-grammar B,

Tasks. Tasks are simple to incorporate in W-grammar B since they
have static semantics very similar to the other types of program units,
Tasks may cause considerable problems for anyone attempting to

express the dynamic semantics though, since Ada task-related

statements (notably the select statement) can be nondeterministic.
Nondeterminism is expressed in W-grammar statements by multiple
hypernotions separated by semicolons on the right hand side of a
W-grammar rule (nondeterminism in a grammar requires a parser to make a
choice between two or more options).

Overloading. Overloading can be easily handled by structuring
library searches so they search in reverse order of library growth. By
searching in reverse order and requiring that parameter types match, the
correct object will be found when searching for an overloaded name.
Overloading is similar to defining local variables with the
same names as global variables.

For an example consider the case where the "+" operator is
overloaded for two integers. The earliest library entry for "4+" with
two integer parameters will be the predefined entry from package
STANDARD, and any user definition of "+" for two integers will occur
later in the symbol table (toward the right end of the string

LIBRARY). If the LIBRARY search routine searches from right to

41
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left, it will encounter the user's definition first, use it, and cease

searching with the correct entry for "+",

Areas for Further Study

This thesis has uncovered several promising areas for future
investigation related to Ada syntax and semantics as well as the syntax
and semantics of programming languages in general.

The first area of interest of course, is the completion of

W-grammar B, Such a continuation of this work would test the assertions 2
made earlier in this chapter, as well as possibly lead to the benefits :;
addressed in chapter I, In addition, a complete Ada W-grammar including s

static semantics would be useful as an academic case study for the
topics below.

More study of W-grammars is necessary. While preparing the
W-grammars in this study the author noted that the readability, and
therefore the useability, of a W-grammar depends heavily on stylistic
decisions made by the W-grammar designer. Research into which W-grammar
styles are most understandable, and guidelines for designing
understandable W-grammars is necessary before W-grammars can be used as
a medium expressing military standards.

W-grammars also seem to express certain constructs better than
others as in the case of the W-grammar B hypernotions "where NOTION is
in NOTETY" and "where NOTION is not in NOT®TY." Defining the first
expression requires a single one-line hypernotion, while defining the
second requires 6 hypernotions for a total of 13 lines of W-grammar
code. Research in this area could reveal the type of programming

languages best suited to W-grammar definition.

------
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More study is needed in the area of formal expression for

semantics—especially in the area of an expression medium. W-grammars

may prove too cumbersome for use in situations where the individual Ei
grammatical symbols must be manipulated. This thesis proves the EE
possibility of describing Ada's static semantics formally, but some f?
other method such as axiomatic definition might produce a more useful E:
form for such uses as formal correctness proofs. 55

<

Thesis Summary

Ada is a modern programming language reflecting the most recent
knowledge about software engineering. But the same attributes which
make Ada a good choice for a programming language, namely its modern
language constructs which promote program reliability and
maintainability, also make Ada a large and complex language.

The formal definition of Ada is in terms of a modified BNF grammar
describing its syntax augmented by a prose description of its semantics.
This thesis explores a method for improving the formal definition of
Ada by formally defining the syntax and static semantics of Ada in terms
of a W-grammar.

A W-grammar is composed of two context-free grammars which are
joined to form BNF-type production rules by a method known as the
Uniform Replacement Rule

Two Ada W~grammars are given in the Appendices. W-grammar A is a
translation from the Ada meta language; it demonstrates the ability of a
W-grammar to express Ada's full syntax.

W~grammar B presents not only the syntax, but the static semantics

as well, This W-grammar does not present the complete Ada language, but
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.. due to time constraints, it simply presents a portion of the language
sufficiently large to demonstrate the ability of a W-grammar to describe
Ada's static semantics.

This thesis demonstrates the ability of W~grammars to describe the
syntax and static semantics of Ada. It is expected that formal
definition of Ada's semantics, both static and dynamic, will add to the
language's portability and reliability. The results presented here help

support these goals.
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Appendix A: W-grammar A

2.1 Character Set

graphic_character : basic_graphic_character; lower_case symbol;
other_special_character symbol.

basic_graphic_character : upper_case symbol; digit symbol;
special_character symbol; space_character.

basic_character : basic_graphic_character; format_effector.
upper_case : capital letter.
digit : zero; one; two; three; four; five; six; seven; eight; nine,

special_character : quotation; sharp; ampersand; apostrophe;
left parenthesis; right parenthesis; star; plus; comma; hyphen;
dot; slash; colon; semicolon; less than; equal; greater than;
underline; vertical bar,

lower_case : letter letter.

other_special_character : exclamation mark; dollar; percent; question
mark; commercial at; left square bracket; back-slash; right square
bracket; circumflex; grave accent; left brace; right brace; tilde.

letter : a; b; c; d; e; f; g; h; i3 j; k; 1; m; n; o; p; q; r; s; t; u;
vV, W; X} Y3 Z.

COMMA :: comma symbol,

COLON :: colon symbol.

SEMICOLON :: semicolon symbol,
LPAREN :: left parenthesis symbol.
RPAREN :: right parenthesis symbol,
PLUS :: plus symbol.

HYPHEN :: hyphen symbol.

STAR :: star symbol.

SLASH :: slash symbol,

GT :: greater then symbol.

LT :: less than symbol,

EQUAL :: equal symbol.

UNDERLINE :: underline symbol,
APOSTROPHE :: apostrophe symbol.

45

........

\ -----------
......
..__.',_ --------------

..........
.......

5 % W

L5]  SRCCNN

Rl WS A A Rl

S,

e
a

B
a"a

A,
L]




CAC AR R A L KT L LR CALC AR oA A AR ML ' g el g SN SRS SR AR N S et N S ard IR A A i i g v y

e
e
.3
v‘_‘
2,
e 2.2 Lexical Elements, Separators, and Delimiters 3
DN %
delimiter : simple_delimiter symbol; compound_delimiter symbol. f
simple_delimiter : ampersand; apostrophe; left parenthesis; right :ﬁ
parenthesis; star; plus; comma; hyphen; dot; slash; colon; -
semicolon; less than; equal; greater than; vertical bar. o
compound_delimiter : arrow; double dot; double star; assignment; =
inequality; greater than or equal; less than or equal; left label * 3
bracket; right label bracket; box. -
TABLE I. Compound Delimiters in W-grammar A. it
grammatical symbol delimiter N
e
2
arrow symbol => ;\
double dot symbol - -
double star symbol ** ",
assignment symbol 1= o
inequality symbol /= -
greater than or equal symbol »>= e
., less than or equal symbol = -]
i“ left label bracket symbol 1< ¢
' right label bracket symbol >
box symbol <O .
)
ARROW :: arrow symbol. -
DDOT :: double dot symbol, e
DSTAR :: double star symbol. .
ASSIGN :: assignment symbol. -
INEQUALITY :: inequality symbol. .
GE :: greater than or equal symbol. .
LE :: less than or equal symbol. .
LLABEL :: left label bracket symbol. T
RLABEL :: right label bracket symbol. S
BOX :: box symbol. ?’
2.3 Identifiers -
idchars : underline option, letter_or_digit symbol. K
a_letter : lower_case; upper_case. E'
TN 3
- -
46 a
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identifier : a_letter symbol, idchars option.

letter_or_digit : a_letter; digit.,

2.4 Numeric Literals

numeric_literal : decimal literal; based_literal.

2.4.1 Decimal Literals

fraction : dot symbol, integer.

intchars : UNDERLINE option, digit symbol.

decimal literal : integer, fraction option, exponent option.
integer : digit symbol, intchars option.

exponent : capital e symbol, sign, integer.

sign : PLUS; HYPHEN; EMPTY.

2.4,2 Based Literals

based_literal : base, sharp symbol, based_integer, bfraction option,
sharp symbol, exponent option.

bfraction : dot symbol, based integer.

base : integer,

based _integer : extended digit symbol, bchars option.
extended digit : a_letter; digit.

bchars : underline OPTION, extended digit symbol.

2.5 Character Literals

character_literal :: APOSTROPHE, graphic_character, APOSTROPHE.
2.6 String Literals

string literal :: quotation symbol, graphic_character option, quotation
symbol.

47

5 5%

TR

XX

4
s
s s

o

[ Y SRUTIN I )
i Ll

¥ f'.l

4 l.’ o N

)

x>
-

. A

A

. P
.‘A'.Il.l




~. 2.8 Pragmas

pragma :: pragma symbol, identifier, pragma_argument option,
pragma_argument :: LPAREN, argument_association list, RPAREN,
argument_assoclation :: argid option, name; argid option, expression.

argid :: argument_identifier, ARROW.

2.9 Reserved Words

In the W-Grammar reserved words will be identified by the word followed
by "symbol".

AND :: and symbol.
AT :: at symbol,.
BEGIN :: begin symbol.
BODY :: body symbol.
CONSTANT :: constant symbol,
ELSE :: else symbol.
END :: end symbol.
FOR :: for symbol.
IF :: if symbol.
IN :: in symbol.

(‘ IS :: is symbol.

. LIMITED :: limited symbol.

NEW :: new symbol,
NOT :: not symbol.
NULL :: null symbol.
OF :: of symbol.
OR :: or symbol.
OUT :: out symbol.
PACKAGE :: package symbol.
RECORD :: record symbol.
RENAMES :: renames symbol.
SELECT :: select symbol.
TASK :: task symbol.
THEN :: then symbol.
TYPE :: type symbol.
USE :: use symbol.
XOR :: xor symbol.

IO
" Q‘
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3.1 Declarations

)
i
- basic_declaration : object_declaration; number_declaration;
type_declaration; subtype declaration; subprogram declaration;
package_declaration; task_declaration; generic_declaration;
exception_declaration; generic_instantiation; renaming declaration;
deferred_constant_declaration.
3.2 Objects and Named Numbers
object_declaration : identifier 1list, COLON, constant option,
subtype_indication, assignment option, SEMICOLON; identifier list,
COLON, constant option, constrained array definition, assignment
option, semicolon.
assignment : ASSIGN, expression.
number_declaration : identifier list, COLON, constant, ASSIGN,
universal_static_expression.
3.3.1 Type Declarations
type_declaration : full type declaration; incomplete_type_declaration;
private_type_declaration,
‘i’ full_type declaration : TYPE, identifier, discriminant_part option, IS,

type_definition, SEMICOLON.

type_definition : enumeration_type definition; integer_ type_definition;
real_type_definition; array_type_definition;
record_type_definition; access_type definition;
derived_type definition.

3.3.2 Subtype Declarations

subtype_declaration : subtype symbol, identifier, IS,

subtype_indication. 0,
subtype_indication : type_mark, constraint option. S&
>

type_mark : type name; subtype_ name. b

4
NS

constraint : range_constraint; floating point_constraint;
fixed point_constraint; index_constraint; discriminant_constraint.

P D
F

3.4 Derived Types -

- derived type_definition : NEW, subtype indication. -




3.5 Scalar Types

range_constraint : range symbol, range_expression.
range_expression : range_attribute; simple_expression, ddot,
simple _expression.

3.5.1 Enumeration Types

enumeration_type definition : LPAREN, enumeration_ literal specification
list, RPAREN,

enumeration literal_specification : enumeration literal.

enumeration_literal : identifier; character_literal.

3.5.4 Integer Types

integer_type_definition : range_ constraint.

3.5.6 Real Types

real_type definition : floating point_constraint;
fixed_point_constraint.

3.5.7 Floating Point Types

floating_point_constraint : floating accuracy_definition,
range_constraint option.

floating_accuracy_definition : digits symbol, static_simple expression.

3.5.9 Fixed Point Types

fixed_point_constraint : fixed accuracy_definition, range constraint
option,

fixed accuracy_definition : delta symbol, static_simple_ expression.

3.6 Array Types

array_type_definition : unconstrained array definition;
constrained_array_definition.

unconstrained_array_definition : array symbol, index subtype_definition
list, OF, component_subtype definition.
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index_subtype definition : type mark, range symbol, BOX.
index_constraint : LPAREN, discrete_range list, RPAREN.

discrete_range : discrete_ subtype indication; range.

3.7 Record Types
record_type definition : RECORD, component_list, END, RECORD.

component_list : component_declaration, component_declaration repeated;
component_declaration repeated, variant_part; null, SEMICOLON.

component_declaration : identifier list, COLON,
component_subtype _definition, assignment option, SEMICOLON.

component_subtype_definition : subtype indication.

3.7.1 Discriminants

discrminant_part : LPAREN, discriminant_specification sequence, RPAREN,

discrimination_specification : identifijer list, COLON, type mark,
assignment option,

3.7.2 Discriminant Constraints

discriminant_constraint : LPAREN, discriminant_association list,
RPAREN.

discriminant_association : discriminant_name_ part option, expression.

discriminant_name_part : discriminant_simple name, ARROW;
discriminant_simple name, vertical bar symbol,
discriminant_name_part.

3.7.3 Variant Parts

variant_part : case symbol, discriminant_simple_name, IS, variant,
variant repeated, END, case symbol.

variant : when symbol, choice, option repeated, ARROW, component_list.
option : vertical bar symbol, choice.

choice : simple_expression; discrete_range; others symbol;
component_simple name.

------
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3.8 Access Types

access_type definition : access symbol, subtype_indication.

3.8.1 Incomplete Type Declarations

incomplete_type_declaration : TYPE, identifier, discriminant_part
option, SEMICOLON,

3.9 Declarative Parts

declarative_part : basic_declarative_item repeated,
later_declarative_item repeated,

basic_declarative item : basic_declaration; representation_clause;
use_clause.

later_declarative_item : body; subprogram declaration;
package_declaration; task declaration; generic_declaration;
use_clause; generic_instantiation.

body : proper_body; body_ stub.

proper_body : subprogram body; package body; task body.

4.1 Names

name : simple_name; character_literal; operator_symbol;
indexed_component; slice; selected_component; attribute,

simple_name : identifier.

prefix : name; function_call.

4.1.1 Indexed Components

indexed_component : prefix, LPAREN, expression sequence, RPAREN.

4.,1,2 Slices

slice : prefix, LPAREN, discrete_range, RPAREN.

4.1,3 Selected Components

selected_component : prefix_selector.
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o selector : simple_ name; character literal; operator symbol; all symbol. i
If:?‘ L]
4,1.4 Attributes -
attribute : prefix, APOSTROPHE, attribute designator. by
attribute_designator : simple name, optional attrsuffix. ;
i
attrsuffix : LPAREN, universal_static_expression, RPAREN. i
4.2 Literals 79
<
4,3 Aggregates =
aggregate : LPAREN, component_association list, RPAREN. :i
component_association : choice_part option, expression. :i
choice_part : choice, option repeated, ARROW, -
4.4 Expressions -
] expression : relation, expression_suffix option, :
‘E. expression_suffix : short_circuit_control_form, relation; .
logical_operator, relation. -
logical_operator : AND; OR; XOR. N
short_circuit_control_form : AND, THEN; OR, ELSE.
relation : simple_expression; simple_expression, relational_operator,
simple_expression; simple_expression, NOT option, IN, .
range_expression; simple_expression, NOT option, IN, type_mark. ?
simple_expression : unary_adding_operator option, term, se suffix
option,
se_suffix : binary adding operator, term.
term : factor, term suffix option.
term_suffix : multiplying_operator, factor. =
2
factor : primary, exponential option; abs symbol, primary; NOT; I
primary. K
. exponential : DSTAR, primary. L
— <
5 1
N
~
U
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primary : numeric_literal; NULL; aggregate; string literal; name;
allocator; function_call; type_conversion; qualified expression;
LPAREN, expression, RPAREN.

4.5 Operators and Expression Evaluation

logical_operator : AND; OR; XOR.

relational operator : EQUAL; INEQUALITY; LT; LE; GT; GE.

binary_adding_operator : PLUS; HYPHEN; ampersand symbol.

unary_adding_operator : PLUS; HYPHEN.

multiplying operator : STAR; SLASH; mod symbol; rem symbol.

highest_precedence_operator : DSTAR; abs symbol; NOT.

4,6 Type Conversions

type_conversion : type_mark, LPAREN, expression, RPAREN,

4,7 Qualified Expressions

qualified expression : type mark, APOSTROPHE, LPAREN, expression,
RPAREN; type mark, APOSTROPHE, aggregate.

4,8 Allocators

allocator : NEW, subtype indication; NEW, qualified expression.

5.1 Simple and Compound Statements -~ Sequences of Statements
sequence_of_statements : statement, statement repeated.

statement : label repeated, simple_statement; label repeated,
compound_statement.,

simple_statement : null_statement; assignment_statement;
procedure_call_statement; exit_statement; return_statement;
goto__ statement; entry call_statement; delay_statement;
abort_statement; raisq_statement, code_statement.

compund_statement : if statement; case_statement; loop_statement;
block_statement; accept_: statement; select _statement,

label : LLABEL, label_simple_name, RLABEL.
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null_statement : NULL, SEMICOLON.

5.2 Assignment Statement

assignment_statement : variable name, assignment.

5.3 If Statements

if statement : IF, condition, THEN, sequence_of statements, elsif part
repeated, else part option, END IF, SEMICOLON.

elsif_part : elsif symbol, condition, THEN, sequence_of_statements.
else_part : ELSE, sequence_of_statements.

condition : boolean_expression.

5.4 Case Statements

case_statement : case symbol, expression, IS,
case_statement_salternative, case_statement_alternative repeated,
END, case symbol,

case_statement_alternative : variant, sequence_of_statements.

5.5 Loop Statements

loop_statement : loop_prefix option, iteration scheme option, loop
symbol, sequence_of_statements, END, loop symbol, loop_simple_name
option, SEMICOLON,

reverse : reverse symbol,

loop_prefix : loop_simple_name, COLON,

iteration_scheme : while symbol, condition; FOR,
loop parameter_specification.

loop_parameter_specification : identifier, IN, reverse option,
discrete_range.

5.6 Block Statements

block_statement : block_prefix option, declare_part option, BEGIN,
sequence_of_statements, exception part option, END,
block_simple_name option, SEMICOLON.
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block prefix : block simple_name, COLON.
declare_part : declare symbol, declarative part.

exception_part : exception symbol, exception handler,
exception-handler repeated.

5.7 Exit Statements

exit_statement : exit symbol, loop_name option, when_part option,
SEMICOLON,

when_part : when symbol, condition.

5.8 Return Statements

return_statement : return symbol, expression option, SEMICOLON.

5.9 Goto Statements

goto_statement : goto symbol, label name.

“ 6.1 Subprogram Declarations
subprogram_declaration : subprogram specification, SEMICOLON.
subprogram_specification : procedure symbol, identifier, formal part

option; function symbol, designator, formal part option, return
symbol, type mark.

designator : identifier; operator_symbol.

..
e
hs
-«
A
-
)
-

-
L
L

operator_symbol : string literal.

n

formal_part : LPAREN, parameter_specification sequence, RPAREN, .
parameter_specification : identifier list, COLON, mode, type_mark, 3i
assignment option. S;

~.

mode : IN option, OUT option.

6.3 Subprogram Bodies

subprogram_body : subprogram_specification, IS, declarative part
option, BEGIN, sequence_of_statements, exception_part, END,
designator option, SEMICOLON.

I . PN
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6.4 Subprogram Calls

procedure_call_statement : procedure_name, actual_ parameter_ part
option.

function_call : function name, actual_parameter_part option.

actual parameter_part : LPAREN, parameter_association list, RPAREN.
parameter_association : formal_part option, actual_ parameter.
formal part : formal_ parameter, ARROW.

formal_parameter : parameter_simple_ nume.

actual_parameter : expression; variable name; type mark, LPAREN,
variable name, RPAREN,

7.1 Package Structure
package declaration : package specification.
package specification : package, identifier, IS,
basic_declarative_item option, private part option, END,
package simple name option.
private part : private symbol, basic_declarative item repeated.
package body : PACKAGE, BODY, package simple_name, IS,
declarative_part option, BEGIN, sequence_of_statements,
exception_part option, END, package simple name option, SEMICOLON.

7.4 Private Type and Deferred Constant Declarations

private_type declaration : TYPE, identifier, discriminant_part option,
IS, limited option, private symbol, SEMICOLON.

deferred constant_declaration : identifier list, COLON, constant,
type_mark, SEMICOLON.

8.4 Use Clauses

use_clause : USE, package_ name, package name repeated, SEMICOLON,
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8.5 Renaming Declarations

renaming_declaration : identifier, COLON, type_mark, RENAMES,
object_name, SEMICOLON; identifier, exception symbol, RENAMES,
exception_name, SEMICOLON; PACKAGE, identifier, RENAMES,
package name, SEMICOLON; subprogram specification, RENAMES,
subprogram or_entry_name, SEMICOLON.

9.1 Task Specifications and Task Bodies

task_declaration : task specification, SEMICOLON.

task_specification : TASK, TYPE option, identifier, is_part option.

is_part : IS, entry_declaration option, representation_clause option,
END, task simple name option.

task_body : TASK, BODY, task simple name, IS, declarative_part option,
BEGIN, sequence_of_statements, exception_part option, END,
task_simple name option, SEMICOLON,

9.5 Entries, Entry Calls, and Accept Statements

entry declaration : entry symbol, identifier, range_ part option,
formal part option, SEMICOLON.

entry call_statement : entry_name, actual_parameter_part option,
SEMICOLON.

accept_statement : accept symbol, entry simple_name, index_part option,
formal part option, accept_body option.

entry_index : expression.

range_part : LPAREN, discrete_range, RPAREN.

index_part : LPAREN, entry_index, RPAREN,

accept_body : do symbol, sequence_of_statements, END,
entry_simple_name option.

9.6 Delay Statements, Duration, and Time

delay statement : delay symbol, simple_expression, SEMICOLON,
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9.7 Select Statements

select_statement : selective-wait; conditional entry call;
timed_entry call.

9.7.1 Selective Waits

selective wait : SELECT, select_alternative, or_part option, else part
option, END, SELECT, SEMICOLON.

or_part : OR, select_alternative.
select_alternative : when_part option, selective wait_alternative.
when_part : when symbol, condition, ARROW.

selective wait_alternative : accept_alternative, delay_alternative,
terminate_alternative.

accept_alternative : accept_statement, sequence_of_ statements option.
delay_alternative : delay_statement, sequence_of_ statements option.

terminate_alternative : terminate symbol, SEMICOLON.

9.7.2 Conditional Entry Calls

conditional_entry call : SELECT, entry call_statement,
optional sequence_of_ statements, ELSE, sequence_of statements, END,
SELECT, SEMICOLON.

9.7.3 Timed Entry Calls

timed_entry_call : SELECT, entry_call_statement,
sequence_of_statements option, OR, delay_alternative, END, SELECT,
SEMICOLON.

9,10 Abort Statements

abort_statement : abort symbol, task name list, SEMICOLON.

10.1 Compilation Units — Library Units
compilation : compilation_unit repeated.

— compilation_unit : context_clause, library unit; context_clause,
S secondary_unit.
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PN library_unit : subprogram declaration; package declaration;
ﬁtx' generic_declaration; generic_instantiation; subprogram body.

secondary_unit : library_unit_body; subunit.

library_unit_body : subprogram body; package body.

10.1.1 Context Clauses — With Clauses
context_clause : with part repeated.
with part : with _clause, use_clause repeated.

with _clause : with symbol, unit_simple name list, SEMICOLON.

10.2 Subunits of Compilation Units

body_stub : subprogram specification, IS, separate symbol, SEMICOLON;
PACKAGE, BODY, package simple name, IS, separate symbol,
SEMICOLON; TASK, BODY, task simple_name, IS, separate symbol,

SEMICOLON.
subunit : separate symbol, LPAREN, parent_unit_name, RPAREN,
. proper_body.
(T
11.1 Exception Declarations
exception_declaration : identifier list, COLON, exception symbol.
11.2 Exception Handlers
exception_handler : when symbol, exception_choice, other_choices
option, ARROW, sequence_of_statements.
other_choices : vertical bar symbol, exception_choice.
exception_choice : exception_name; others symbol.
11.3 Raise Statements
raise_statement : raise symbol, exception_name option, SEMICOLON.
12,1 Generic Declarations
o generic_declaration : generic_specification, SEMICOLON,
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generic_specification : generic_formal part, subprogram specification;
generic_formal_part, package specification.

generic_formal part : generic symbol, generic_parameter_declaration
repeated,

generic_parameter_ declaration : identifier list, COLON, generic_mode
option, type mark, assignment option, SEMICOLON; TYPE, identifier,
IS, generic_type definition, SEMICOLON; private_type declaration;
with symbol, subprogram specification, sub_is_part option.

generic_mode : IN, OUT option.

sub_is_part : IS, name; IS, BOX.

generic_type definition : LPAREN, BOX, RPAREN; range symbol, BOX;
digits symbol, BOX; delta symbol, BOX; array_type definition;
access_type_definition.

12.3 Generic Instantiation

generic_instantiation : PACKAGE, identifier, IS, NEW,
generic_package_name, generic_actual_part option, SEMICOLON;
procedure symbol, identifier, IS, NEW, generic_procedure name,
generic_actual_part option; FUNCTION, designator, IS, NEW,
generic_function_name, generic_actual part option, SEMICOLON.

generic_actual_part : LPAREN, generic_association list, RPAREN;

generic_association : generic_formal_ part option,
generic_actual parameter.

generic_formal_part : generic_formal_ parameter, ARROW.

generic_formal parameter : parameter_simple name; operator_symbol.

generic_actual_ parameter : expression; variable name; subprogram name;
entry_name; type_mark.

13.1 Representation Clauses

representation_clause : type representation_clause; address_clause.

type_representation_clause : length_clause;
enumeration representation_clause; record_representation_clause.
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13.3 Enumeration Representation Clauses

enumeration_representation clause : FOR, type simple name, USE,
aggregate, SEMICOLON,

13.4 Record Representation Clauses

record_representation_clause : FOR, type simple name, USE, RECORD,
alignment_clause option, component_clause option, END, RECORD,

SEMICOLON.

alignment_clause : AT, mod symbol, static_simple_ expression,
SEMICOLON,

component_clause : component_name, AT, static_simple expression,
range symbol, static_range, SEMICOLON.

13,5 Address Clause
address_clause : FOR, simple_name, USE, AT, simple_ expression,

SEMICOLON.

13.8 Machine Code Insertions

code_statement : type mark, APOSTROPHE, record_aggregate, SEMICOLON.
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,}2: Appendix B: W-grammar B
Metaproductions
(B.A) CHAR :: graphic_character,
(B.B) LETTER :: a; b; c¢; d; e; f; g; h; 1; j; k; 1; m; n; o3 p; q; r;
S; t; u; v, w; x; y; 2.
(B.C) DIGIT :: 1; 2; 3; 4; 5; 6; 7; 8; 9; 0,
(B.D) NUMBER :: zero; one; two; three; four; five; six; seven; eight;
nine.
(B.E) NOTION :: CHAR; NOTION CHAR.
(B.F) EMPTY :: .
(B.G) NOTETY :: NOTION; EMPTY.
(B.H) COLLATING SEQUENCE :: 01234567890abcdefghi jklmnopqrstuvwxyz_.
(B.I) IDENTIFIER :: LETTER; IDENTIFIER underscore; IDENTIFIER LETTER;
IDENTIFIER DIGIT,
G (B.J) NAME :: name LETTER; NAME name CHAR.
(B.K) LIBRARY ::
nextentry library entry endlibrary;
nextentry library entry LIBRARY.
(B.L) 1ID :: library entry.
(B.M) IDS :: id ID; IDS id ID.
(B.N) IDETY :: ID; EMPTY.
(B.0) FORMAL PART :: parameter specification group.
(B.P) TYPE MARK :: type designator.
(B.Q) PSEQUENCE :: parameter specification sequence.
(B.R) DESCRIPTION :: kindof IDENTIFIER]1 parameter NOTETY return
IDENTIFIER2 CONTENTS.
(B.S) CONTENTS :: contains ID repeated.
(B.T) UNDERSCORE :: _.
Y ~
By o
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- Hyper-rules
t . o

(B.1) graphic_character : basic graphic_character; lower_case symbol;
other_special_character symbol.

(B.2) basic_graphic_character : upper_case symbol; DIGIT symbol;
special_character symbol; space_character.

(B.3) basic_character : basic_graphic_character; format_effector;

(B.4) wupper_case : capital LETTER.

(B.5) special_character : quotation; sharp; ampersand; apostrophe;
left parenthesis; right parenthesis; star; plus; comma;
hyphen; dot; slash; colon; semicolon; less than; equal;
greater than; underline; vertical bar.

(B.6) lower_case : letter LETTER.

(B.7) other_special_character : exclamation mark; dollar; percent;
question mark; commercial at; left square bracket; back-slash;
right square bracket; circumflex; grave accent; left brace;
right brace; tilde.

(B.8) NOTION option : NOTION; EMPTY.

'i' (B.9) NOTION repeated : NOTION repeated, NOTION; NOTION; EMPTY.

(B.10) NOTION list : NOTION; NOTION 1list, comma symbol, NOTION.

(B.11) NOTION sequence : NOTION;

NOTION sequence, semicolon symbol, NOTION.

(B.12) NOTION pack : left parenthesis symbol, NOTION list,
right parenthesis symbol.

(B.13) NOTION group : left parenthesis symbol, NOTION sequence,
right parenthesis symbol.

(B.14) library entry : NAME DESCRIPTION.

(B.15) letter_or_digit : letter LETTER symbol; NUMBER symbol.

(B.16) NOTETY1 print :
where NOTETY] is EMPTY;

NOTETY2 print, underscore symbol,
where NOTETY1 is UNDERSCORE NOTETY2;
NOTETY2 print, letter LETTER symbol,
where NOTETYl is LETTER NOTETY2;
NOTETY2 print, DIGIT symbol,
~ where NOTETY1 is DIGIT NOTETY2,
64
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(B.16) true : EMPTY.

(B.17) where NOTETY is NOTETY : true.

(B.18) where NOTION is in NOTETY1 NOTION NOTETY2 : true.

(B.19) where NOTION is not in EMPTY : true.

(B.20) where EMPTY is not in NOTION : true.

(B.21) where NOTETY1 or NOTETY2 : where NOTETYl; where NOTETY2.
(B.22) where NOTETY1 and NOTETY2 : where NOTETYl1l, where NOTETY2,

(B.23) where NOTION1 is not in NOTIONZ :
where NOTETY1 CHAR]1 is NOTION1 and NOTETY2 CHAR2 is NOTION2,
where CHAR1 is not CHAR2 and NOTION1 is not in NOTETY2;
where NOTETY1 CHAR]1 is NOTION1 and NOTETY2 CHAR2 is NOTION2,
where NOTETY1 is not in NOTETY2.

(B.24) where NOTION1 and NOTIONZ2 : where NOTION1, where NOTION2,

(B.25) where CHAR1 is not CHAR2 :
where CHAR1 precedes CHAR2 in COLLATING SEQUENCE;
where CHAR2 precedes CHAR1 in COLLATING SEQUENCE.

(B.26) where CHARI] precedes CHAR2 in NOTION :
where NOTETY1 CHAR1 NOTETY2 CHAR2 NOTETY3 is NOTION.

(B.27) where NOTION1 is not NOTION2 :
where NOTETY1 CHAR1l is NOTIONl and NOTETY2 CHAR2 is NOTION2
and NOTETY1 is not NOTETY2;
where NOTETY1 CHAR1 is NOTION1 and NOTETY2 CHAR2 is NOTION2
and CHAR]1 is not CHAR2,

(B.28) where NOTION1 describes NOTIONZ :
where NOTION1 is NOTION3 NOTETYI,
where NOTION3 is name ALPHA1 NOTION4,
where NOTION2 is ALPHA1l NOTETY2,
where NOTION4 describes NOTETY3,

(B.29) where NOTION1 describes EMPTY :
where NOTION1 is kindof NOTIONZ2.

(B.30) where NOTION1 kind NOTION2 :
where NAME kindof NOTION2 parameter NOTETY is NOTION1.

(B.31) where NOTION1 parameter NOTION2 :
where NAME kindof NOTETY! parameter NOTION2 return NOTETY2 is
NOTION1,
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e (B.32) where NOTION1 return NOTION2 : i

-~ where NAME kindof NOTETYl parameter NOTETY2 return NOTION2 N,
contains NOTETY3 is NOTIONI1,

(B.33) where NOTION1 contains NOTION2 : iy

where NAME kindof NOTETY1l parameter NOTETY2 return NOTION3 is >

NOTION1 and NOTETY3 contains NOTION2 NOTETY4 is NOTION3, \

where EMPTY is NOTETY4 or contains NOTETYS5 is NOTETY4. by

(B.34) LIBRARY compilation : LIBRARY compilation unit repeated. S'

Y

(B.35) LIBRARY compilation unit : T

LIBRARY context clause, LIBRARY library unit I1D;
LIBRARY context clause, LIBRARY secondary unit ID.

(B.36) LIBRARY library unit ID : -
LIBRARY subprogram declaration ID; -
LIBRARY package declaration ID; =
LIBRARY generic declaration ID; >
LIBRARY generic instantiation ID; o
LIBRARY subprogram body ID, where ID is not in LIBRARY.

§
(B.37) LIBRARY secondary unit ID : e
LIBRARY library unit body ID, where ID is in LIBRARY; =

LIBRARY subunit ID, where ID is in LIBRARY. e

Z

Cib (B.38) library unit body ID : subprogram body ID; package body ID. -
(B.39) LIBRARY context clause : :i'

LIBRARY IDS with clause LIBRARY IDS use part repeated. -

N

(B.40) LIBRARY IDS use part : ol

use symbol, LIBRARY IDS use clause repeated. .

(B.41) LIBRARY IDS with clause : 2

with symbol, LIBRARY IDS with part, SEMICOLON. o

(B.42) LIBRARY IDS with part : IDENTIFIER, -

where ID describes IDENTIFIER,

where NOTETY1 nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS,

LIBRARY NOTETY3 NOTETY4 with part.

(B.43) LIBRARY with part : EMPTY.

(B.44) LIBRARY IDS use clause :
use symbol, LIBRARY IDS package list, SEMICOLON.
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Pl (B.45) LIBRARY IDS package : IDENTIFIER,

SR where ID kind package,
where ID describes IDENTIFIER,
where NOTETY1 nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS.

(B.46) LIBRARY subprogram declaration ID : subprogram specification ID,
where NOTETY1 nextentry ID NOTETY2 is LIBRARY,
where NOTETY3 id ID NOTETY4 is IDS,
LIBRARY NOTETY3 NOTETY4 with part.

(B.47) subprogram specification ID :

procedure symbol, IDENTIFIER, FORMAL PART option,
where ID describes IDENTIFIER,
where ID kind procedure,
where 1D parameter FORMAL PART;

function symbol, IDENTIFIER, FORMAL PART option,
return symbol, TYPE MARK,
where ID describes IDENTIFIER,
where ID kind function,
where ID parameter FORMAL PART,
where ID return TYPE MARK.

(B.48) LIBRARY subprogram specification :
procedure symbol, IDENTIFIER, FORMAL PART option,

- LIBRARY validate FORMAL PART;
“ function symbol, IDENTIFIER, FORMAL PART option,
return symbol, TYPE MARK,
where ID describes TYPE MARK,
where ID kind type,
where ID is in LIBRARY.

(B.49) LIBRARY validate FORMAL PART :
where ( PSEQUENCE ) is FORMAL PART,
LIBRARY validate PSEQUENCE.

(B.50) LIBRARY validate PSEQUENCE1 :

where PSEQUENCE2 semicolon PSEQUENCE3 is PSEQUENCEL,
where PSEQUENCE3 is parameter specification,
LIBRARY validate PSEQUENCEZ2,
LIBRARY validate PSEQUENCE3;

where PSEQUENCE is parameter specification,
where IDENTIFIER 1list colon mode TYPE MARK NOTETY1 is

PSEQUENCE,

where ID describes TYPE MARK,
where NOTETY2Z nextentry ID NOTETY3 is LIBRARY,
where ID kind type,
where NOTETY1l is TYPE MARK assignment.

(B.51) parameter specification :
IDENTIFIER 1list, colon symbol, mode, TYPE MARK,
e TYPE MARK assignment option.
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(B.52) mode : in symbol option, out symbol option.

(B.53) LIBRARY1 subunit ID :
separate symbol, left paren symbol, IDENTIFIER,
right paren symbol, LIBRARY2Z proper body ID2,
where ID contains ID2,
where ID describes IDENTIFIER,
where LIBRARY2 ID NOTETY is LIBRARY1,

(B.54) proper body : subprogram body; package body; task body.
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